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Ising Droplets in Five Dimensions 

D .  S t a u f f e r  I 

Received October 20, 1993 

Monte Carlo simulations indicate that the size distribution of Coniglio-Klein 
droplets in the five-dimensional nearest-neighbor lsing model corresponds to 
mean field lsing exponents. 
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Droplet models for phase transitions are more than half a century old 
(nucleation theory, cluster expansions) and have worked successfully for 
the equilibrium properties of two- and three-dimensional Ising models, tt~ 
The kinetics, however, is still problematic ~2~ in that we do not have a 
good picture of how decorrelation occur with clusters and this hampers our 
understanding of  the cluster acceleration algorithmsJ 3~ The best oppor-  
tunity to understand the decorrelation mechanism is in mean field, but 
there is no verification that droplet models actually work at mean field 
critical points. Although they have been checked for spinodals in mean 
field in long-range interaction Ising models, t4~ we are not aware of a con- 
firmation of the relevance to the mean field Ising critical point, due to the 
difficulty with deconvoluting the critical from the spinodal data. 

For  dimensionalities d above the upper critical dimension of four, the 
leading critical exponents for Ising models take on their mean field values: 
fl = v = 1/2, y = 1, 6 = 3. What  happens with the droplets in high dimen- 
sions: Are they described by these leading mean field exponents, or are they 
heterophase fluctuation c o r r e c t i o n s  to the leading mean field behavior? 

In both cases we expect them to follow the standard scaling law in 
zero field: 

n ( s )  = s - r f ( (  T - -  T c ) s  ~) 
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Fig. 1. 
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Critical droplet numbers for 235 lattice versus cluster size s. The lines represent 
= 7/3 and 5/2. 

with z = 2 + 1/6 = 7/3 in the case of droplets as the leading term, and a 
largher Fisher exponent z for the case of droplets as corrections. It is less 
clear how cr might change away from its three-dimensional value 1~fir; 
thus, cluster counting right at the critical point and a determination of T 
seems to be the best way to answer the above question of leading versus 
correction contribution of droplets. We use the Conigl io-Klein definition 
for clusters of overturned spins and work in d =  5, thereby avoiding the 
spinodal with ~ = 5/2 which comes in at d =  6.15~ 

Figure 1 shows that for a rather small cluster (containing up to 34 
sites) even right at the critical point the cluster numbers equilibrate within 
103 time steps. We see that at Tc the power law decay is fulfilled, with 
r = 2 + 1/6 in both three and five dimensions; ~ = 5/2 works only for short 
times in d =  5. Below T,, both spontaneous magnetization and the mass of 
the largest cluster vary as the square root of T o - T ;  the results for the 
mean cluster size below T,. and the time dependence at T,. were less clear. 
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